
2023-02-13 Architecture WG Meeting Notes

Date

13 Feb 2023

ZOOM Meeting Information:

Monday, February 13, 2023 at  11:30am PT/2:30pm ET.

Join Zoom Meeting

https://zoom.us/j/7904999331

Meeting ID: 790 499 9331

Attendees:

Jeff Braswell (openIDL)
Sean Bohan (openIDL)
Nathan Southern (openIDL)
Tsvetan Georgiev (Senofi)
Ken Sayers (AAIS)
Mason Wagoner (AAIS)
Dale Harris (Travelers)
Yanko Zhelyazkov (Senofi)
Peter Antley (AAIS)
Faheem Zakaria (Hanover)
Ash Naik (AAIS)
Brian Hoffman (Travelers)

Agenda:

Update on ND POC (KenS)
Update on openIDL Testnet (Jeff Braswell)
Update on internal Stat Reporting with openIDL (Peter Antley)
Update on Infrastructure Working Group (Sean Bohan)
ETL Discussion Continues (PeterA)
MS Hurricane Zeta POC Architecture Discussion (KenS) 

https://zoom.us/j/7904999331


AOB:
Future Topics:

Notes:

ND Uninsured Motorist

All data from all carriers and DOI
Doing data call and DOI will work together on report
Report in the next day or so
9 Groups, 11 Companies + ND DOI + ND DOT

Update on openIDL Testnet (Jeff Braswell)

Progress on Testnet continues
Conversations with Hartford and Travelers for test data
Opportunity to use new tools like Fabric Operator to make setting up more efficient
Moving stat reporting farther down the road, solve issues for carriers, security issues topics to be address

Update on internal Stat Reporting with openIDL (Peter Antley)

Going well, focused on ETL
Mason continues to work on code to decode stat records, urrently on Mobile Home Owners
PA efforts on ETL
Near future: interested in getting internal stat reporting, get data into node, next 6 months
Big changes: looking to bring up node in near future, best way to do that - waiting on Operator to be functional

Update on Infrastructure Working Group (Sean Bohan)

ETL Discussion Continues (PeterA)

Mechanism to log in, mechanism to submit data
Proposed discussion flow:

Carriers submit stat data via SDMA
Run edit packages against those coded messages
after edit packages with SDMA, get go/no go decision (pass / fail)
Submit if passed, review if failed
Next stage is DECODING if passed

(change 01 to Alabama)
error checking within decodes
if decode works, edits work, move-load into HDS
Last week discussion 



Stuff Peter has done and mason working on (internal stat stuff is the decoding, not the edits
Legacy system, worked well, AAIS moving the size of the customer base in the last couple years
EX: customer wiht a lot of records, load times were bottlenect b/c older system
stripped out MVP of SDMA and made serverless rendition of it
GT2 - can load data in 20 min

GT2 - sinmoler UI than SDMA
essentially - taking file, putting into S3, putting metadata about object into queue, using lambda to process all data
way GT2 works, uses Lambda to move data from buckets to Elastic File System, shared file system, step function (orchestator)
certain timeout in lambda, orchestrate mult lambdas together, nifty tool
make smaller files, process in parallel
using Aurora vs RDS
RDS one step above linux box
Amazon took RDS step farther, what does enterprise RDS look like?
2 versions big and popular - 

first use for auruora - allows to have multi-zone replication, complex dbs in synergy aroundf the globe
designed to work with lambdas and do cool networking things

Serverless might fit us well
Use mult subnets tied into Auruora for extremely fast load



SDMA functionalty with GT2 Speed may be a goal - is Aurora off the table? use aurora?
could run postgres with aurora
Possible? 
Building a reference implementation, something works, not neccessarily most robust but could build it out, something as an option
get IT folks to run in environment, as a service? 
not core component of openIDL, DIY
Aurura - paid tool, locks into AWS, ref imolementation on AWS, lanbdas, step functions, etc. - all reasonable things to put into Ref 
Implementation?
Issues?
Aurora supports Postgres SQL
Moe lanbdas improving, horizontal scaling makes it possible, splitting across lambdas, stripped down SDMA, loses some functionality
UI and interaction between errors and stuff, both but mostly lambdas
no sequential dependency on records
dev has said Auroria allowed massive parallelization of IO, built for serverless, high horizontal scaling
How long is too long for a load (time it takes to load data into the db)? 6 hours for 30MM records? fro you hit submit until it is all there
most use cases, daily upload enough
IICMBA (ND )use case, check for "is this car insured right now" very diff use case
IICMBA competes with ND POC is trying to do
Issues with tech stack they are targeting?
How if a carrier isn't on AWS? Subset as a reference to be added to it? THere is a corresponding tech stack
good azure dev spends time with PA could translate
keeping DB/Postgres the same
so many interdependencies

Time Item Who Notes



Documentation:

Notes: (Notes taken live in Requirements document)

Recording: 


	2023-02-13 Architecture WG Meeting Notes

