
openIDL - Architecture - Tenets and Decisions
This page describes the decisions we have taken and the tenets that drive them.

Table of Contents

Architecture Tenets
The System Must be Manageable
The System Must be Cloud Agnostic Whenever Possible
Infrastructure as a Service before Self Managed Infrastructure
The System Must be Transparent
The Privacy of the Data Distributed Nodes is Paramount

Architecture Decisions
SECURITY
DATA ARCHITECTURE
APPLICATION DEVELOPMENT
DEV / OPS

Architecture Tenets
Here we discuss the tenets of the architecture. Which things are most important and why. When we make architecture decisions below, they take these
tenants into account.

The System Must be Manageable

We will have a distributed network using distributed ledger technology in the guise of Hyperledger Fabric. The surrounding components such as APIs, UI
Applications, Databases, Extraction Patterns and Data Transformation and Enrichment must all be managed. That is, when we have the need to add
some new functionality, we want all the participants to have the necessary components. To make this work, the node must be manageable. For this
purpose we intend to use GitOps, where the configuration is managed by a configuration held in git which is used to update the node components
automatically.

The System Must be Cloud Agnostic Whenever Possible

The openIDL components will most often be deployed to the cloud. While we will use AWS, other participants may choose another cloud provider. For
this reason, we want the deployment to work in any one of the possible clouds without undo alteration or duplication. There will be specific areas where
the cloud provided services must differ. In these cases, we will use a layer to normalize the interface if possible. We must always be careful to balance
cost and complexity with flexibility.

Infrastructure as a Service before Self Managed Infrastructure

Whenever possible when there is a choice between implementing infrastructure that we manage and that which is managed automatically by the cloud
provider, lean toward cloud provider managed solutions.

The System Must be Transparent

The use of Infrastructure as Code will make the system’s configuration self documenting. Anywhere this does not fully explain, extra documentation must
be provided. This is generally found in the files in git.README.md

The Privacy of the Data Distributed Nodes is Paramount

The data made available to the openIDL system must have privacy managed by the data owner. The owner must control all "access" to the data and be
confident that no data is shared with other nodes without their knowledge.

Architecture Decisions

SECURITY

SUBJECT Secret Management

STATUS Open

http://README.md

DECISION The secrets are held in: GitHub Secrets and Vault

The secrets are managed by:

The secrets are accessed from Iac …?

DISCUSSION The management of secrets is complicated. Below are some requirements for the solution. If we can tick off all these, we’ll have a
winner.

Must be able to manage:

- carrier secrets

- api keys

- aais secrets

- common secrets

- cloud provider secrets

- database secrets

- hlf network secrets like certs

- application secrets

- distributed secrets

Must:

- rotate passwords

- be encrypted

- permissioned so only visible to specific individuals or ci/cd

- manageable - update / delete / create / view

- auditable - know what changed and that no breaches have occurred

- be accessible from IaC - terraform

- be accessible from IaC - helm

- be accessible during CI/CD

- be cloud agnostic for use

- be multi-cloud

- have a health check of the system - at startup and intervals

- provide logging and notifications of updates

- exhibit CIA - confidentiality, integrity, access

- have a user interface for managing the secrets

Options:

- tools

o vault

o aws secrets manager

-

SUBJECT Automation of Hyperleger Fabric Network Setup

STATUS Open

DECISION Use Blockchain Automation Framework (BAF)

DISCUSSION BAF will be used to set up the network automatically.

BAF will run on a pod inside the kubernetes cluster so it has access to the required credentials and certificates that are stored in
Vault.

The Vault instance is running inside the private cloud, so the automation cannot run from GitHub actions.

SUBJECT User Authentication for Application Access

STATUS Open

DECISION User Authentication is Platform Specific or can it use Okta

DISCUSSION The authentication of users must be cloud specific for access to applications because there is no generic authentication provider.

- start with aws strategy - cognito

- want to offload identiy to identity provider

- can we use okta as the main identity management and link it to the underlying provider thus acting as a common api for the
applications?

DATA ARCHITECTURE

A. Using the HDS DB

B. Using only the API

DA - Extraction Processing
DA - Harmonized Data Scope
DA - Harmonized Data Loading / Normalization
DA - Harmonized Data Format Governance
DA - Harmonized Data Store
DA - Harmonized Data Access
DA - Harmonized Datastore DBMS Implementation
DA - Harmonized Data Model
DA - Export Data Model

SUBJECT DA - Extraction Processing

STATUS Open

DECISION TBD

DISCUSSION

In openIDL when a data call (or a stat reporting) is "consented to" by the carrier, the data must first be accessed from somewhere and then transformed into the result format and lastly converted into a report that the target party
(usually a regulator) can access or be sent.

The transformation of the data from its "harmonized" state to the result state is called the "extraction", "extraction pattern" or "extraction process".

Since accessing the data can take multiple forms (see other architecture decision "Harmonized Data", there is some variability in this decision while that decision is undecided.

We can assume that the data being accessed for the extraction is "harmonized", meaning for every execution of the extraction on a single node or multiple nodes for a single carrier or multiple carrier, the schema and semantics
of the data are known and consistent.

Creation and Management of extractions can be organization specific. For stat reporting, this is the stat-agent (such as AAIS), for data calls, it could be the regulator or a representative like the stat-agent.

In either option from the diagrams above, the extraction processor will access the data through an api instead of accessing a database directly.

It is proposed that graphQL be considered as the language used to access for extraction and summarization. The extraction processor could apply some correlation to the data, like using an address to look up census data or
similar. This means the extraction is more than just a data access.

See the diagram above for how this component may be architected.

SUBJECT DA - Harmonized Data Scope

STATUS Proposed

DECISION Proposal:

data format / schema will be standardized across nodes, for a given use case

DISCUSSION The data available for extraction must be normalized for multiple extractions across multiple use cases across multiple members.

Is this one single model?

Is the data at rest in the same model as the data in motion?

SUBJECT DA - Harmonized Data Loading / Normalization

STATUS Proposed

DECISION Proposal:

If the HDS is at rest, the loading of that data is the responsibility of the member owner of the node.

If the HDS is an API, the maintenance of that API is the responsibility of the Technical Steering Committee and the mapping to other
data sources is the responsibility of the member owner of the node.

1.
2.

1.
2.
3.

1.
2.

DISCUSSION
Loading data will be via an API, IDM or ...? Will a direct SQL load be allowed? This will use the ingestion model.
We should consider using graphQL as the extraction processing language or part of the extraction processing component to
replace the current map reduce "extraction pattern"

SUBJECT DA - Harmonized Data Format Governance

STATUS Proposed

DECISION Proposal:

data schema, enumerations and the data dictionary will be standardized, and endorsed by the RRSC (and other groups per use case)

DISCUSSION The Technical Steering Committee, Regulatory Reporting Steering Committee and the Data Model Steering Committee are all
possible owners of this.

SUBJECT DA - Harmonized Data Store

STATUS Proposed

DECISION Proposal:

HDS can be persistent or transient. It's a member's decision. See next
HDS can be persistent and can be used by member's as a "warehouse on the edge" for sharing data via openIDL
Either way, the member is responsible for configuring the API that accesses the data.

DISCUSSION The data available for extraction must be normalized for multiple extractions across multiple use cases across multiple members.

Is this one single model?

Is this one database?

Is this data at rest and/or available through an API

SUBJECT DA - Harmonized Data Access

STATUS Proposed

DECISION Proposal:

All access to "Harmonized Data" is through an API
Member is responsible for the quality of the data retrieved and for certifying that a "request" for the data is supported.

DISCUSSION If we determine that a standing harmonized store is not required, then we must establish an API with a standardized payload format
that can be used to access the data.

The member must "certify" that the data is available and quality in order to consent to a data extraction.

The consent and certification can be captured on the ledger.

The call to the API will come from the extraction processor.

The extraction processor can run on the member node.

Can the extraction processor run on the Analytics Node?

If the extraction runs outside the member node, how does this work? Can it call the API directly? Must we use HLF to "transport" the
data?

SUBJECT DA - Harmonized Datastore DBMS Implementation

STATUS Open

DECISION Proposal:

If the HDS is a physical db inside the node, then the HDS DBMS must support our chosen access language (graphQL?)

HDS will be a relational database. It cannot be a noSQL, graph, document DB etc.

technical implementation of a HDS is non-prescriptive i.e. it can be MySQL, MS SQL, Oracle etc.

DISCUSSION If data is at rest in the harmonized datastore, what is the technology?

Does it need to be a single dbms?

Should it be noSQL?

Can it just be an interface?

SUBJECT DA - Harmonized Data Model

STATUS Open

DECISION ??

DISCUSSION The data available for extraction must be normalized for multiple extractions across multiple use cases across multiple carriers.

The data must be produced by the carrier from their original sources.

Is this an ETL process?

What is the format of the load data? Is it the schema of a standing HDS database or is it a messaging format?

Is there just one "in transit" model or are there different ones for different contexts? Contexts might be the data call, the line of
business, etc.

SUBJECT DA - Export Data Model

STATUS Open

DECISION Proposal:

The export data model is specific to each use case and must be specified in that data call / regulatory report

DISCUSSION The extraction process results in an export of data in an agreed format. The format of this must be defined as part of the specific
data call or regulatory report.

APPLICATION DEVELOPMENT

SUBJECT Common UI Code Management

STATUS Open

DECISION Single Application Angular UI Variations will utilize angular libraries

DISCUSSION The library will be a different kind of angular app located in the same super library as all apps that use it. This is the approach for the
data-call-ui. (openidl-ui and openidl-carrier-ui)

For common / shared libraries we will use an npm registry.

DEV / OPS

SUBJECT Local Kubernetes Development

STATUS Open

DECISION Use Minikube for Local Kubernetes Runtime

DISCUSSION There are multiple options for local kubernetes deployment. We chose Minikube over Kind because of it's simplicity.

SUBJECT Infrastructure as Code

STATUS Open

1.
2.

DECISION Use a combination of solutions depending on application.

Cloud
Terraform for Infrastructure Provisioning in the Cloud
GitHub actions for CI/CD and execution of Terraform
Ansible for Deploying ??
Helm for managing Kubernetes
Flux for provisioning and managing distributed nodes

Local Reference
Bash scripts for provisioning local

DISCUSSION Provide options for selection upon setup.

Terraform Cloud
Terraform Enterprise
GitHub Actions
Manual

All provisioning artifacts are managed in git

The customer will have a github / gitlab account that is private to them.

We may or may not have access to that repository.

To accept updates, the customer will accept a merge/pull request into their repository with our changes.

That update in git will automatically trigger the workflow.

The workflow may allow automatic provisioning or require an acceptance from the customer.

- milestones

start with github actions, forked repos and manual execution
move to terraform cloud for aais node

target will have two options for node owners

use terraform cloud
use terraform on-prem (terraform enterprise)

SUBJECT Infrastructure as Code

STATUS Open

DECISION Use Terraform to provision cloud specific services

DISCUSSION

SUBJECT Infrastructure as Code

STATUS Open

DECISION Execute Terraform using GitHub actions

DISCUSSION If possible use GitHub actions - see above for options
If there is some reason to use cloud specific
- cost of implementation
- complexity etc

SUBJECT Infrastructure as Code

STATUS Open

DECISION Use Flux v2 for Deployment of Kubernetes artifacts

DISCUSSION This technology enables GitOps in build and deployment

SUBJECT Infrastructure as Code

STATUS Open

DECISION Use Helm Charts for Application and Network provisioning in Kubernetes

DISCUSSION Helm is a very popular way to provision Kubernetes clusters

SUBJECT DevOps

STATUS Open

DECISION Publish Common Libs as images to NPM Registry in GitHub

DISCUSSION Any common components should be packaged as images and published to the GitHub packages.

SUBJECT DevOps

STATUS Open

DECISION Images should be published in the GitHub packages container registry

DISCUSSION Since we separate building of images from their deployment, we can build the images into the registry and then refer to that registry
when deploying

SUBJECT Secrets Management

STATUS Open

DECISION secret management should be cloud agnostic

DISCUSSION Notes
- the secrets for the each cloud might be managed differently
- hashicorp makes a popular opensource solution called vault
- if cloud specific, we should have a layer that normalizes the access of secrets so the scripts / config files don’t need to change
from cloud to cloud

SUBJECT Secret Management

STATUS Open

DECISION Secrets are applied during deployment, not in the image

DISCUSSION The images used to create the pods in Kubernetes should not contain any private information. This can all be applied during
deployment by mounting the file from a secret held outside.

SUBJECT MongoDB

STATUS Open

DECISION The Harmonized Data Store will be deployed inside kubernetes

DISCUSSION The best practice regarding databases and Kubernetes is to host them outside. As long as the db is mongo and has a uri accessible
to the insurance data manager and other apis, it is viable.

The terraform to set it up may need different flavors for the different clouds.

SUBJECT UI Deployment

STATUS Open

DECISION The UI will be deployed inside kubernetes

DISCUSSION There are two main choices for deploying the ui. Here is the discussion about the relative merits for the options.

Item Cloud Specific Cloud Agnostic

How Using S3 and other AWS specific technologies Deploy as pod inside Kubernetes

Performance Very good performance Less performant

Availability The UI itself is more available, but the api isn’t any more
available

The UI is subject to the same availability as the
API

Cost Very inexpensive More cost, TBD

Scalability Infinite scalability, subject to API Not as scalable, but good

Complexity More complex for multi-cloud Less complex for multi-cloud

Managability More difficult to manage in remote nodes Less complex for remote nodes

We deploy the applications inside kubernetes so they are more manageable. This includes the APIs and the UIs. Deploying at the
edge is a best practice, but manageability is more important in this case. We can deliver updates to the code as images in a container
registry and have them deployed much easier than if we used AWS (or other cloud) specific services.

Q: Why not have a centralized UI?

A: The UI is configured to access the API. iI has to have private access to the API inside the node, not go out onto the internet and
have the apis exposed publicly. The apis are private to the member cloud, actually private to the kubernetes cluster.

Because manageability is a very high priority item for the ui components, this outweighs the differences in other aspects.

SUBJECT Channel Policy

STATUS Open

DECISION The Channel Policy will be set to ANY with a specific role required to allow new organizations to join the network

DISCUSSION The channel policy controls how new organizations are joined to the network. If set to Majority, many of the participants on the
network must approve new organizations. If set to Any, then just one is required. We will create a role of Admin which will be
required by the policy for any organization to approve new organizations.

	openIDL - Architecture - Tenets and Decisions

