
4 - AWX Setup and Configuration
This page provides information on the steps that are required to set up and configure the openIDL Ansible Jobs. Those jobs are essential to set up the
openIDL node environment and deploy the different node components on the provisioned infrastructure.

Prerequisites:

AWS infrastructure is provisioned
AWX is installed and operational
Access to AWX with the default Admin user/password
Configuration is done and available at a private git repository
Credentials information is defined and available

AWS IAM user
git private repo deploy key
bastion ssh private key
HDS db access
fabric console user and password

Bastion machine (gateway) host address is available

The steps:

Step Notes User

Create new
Organization

Create a new organization with the org_id admin

Setup new
AWX org user

Create a new user specific to the organization, and assign admin permissions to the created organization above.

It is a good idea to use a dedicated user for every organization that is deployed through AWX. Note that AWX can be used in
a multitenant mode where multiple organizations can be deployed using the same AWX.

admin

Setup org
project

Create a new project named with the org name, use openIDL ansible git URL and the appropriate branch.

Source Control Type: Git

Source Control URL: https://github.com/openidl-org/openidl-aais-gitops.git

Source control Branch: operator-develop

Update Revision on Launch: Checked

org
user

Setup
inventory

Create a new Inventory named with the org name (bastion-org_id).

Add host using the bastion machine address

Add a group named ansible_provisioners

Add the bastion host to the group

org
user

Create
Credentials

Create the credential types as specified below (see credentials table) admin

Create AWX
job tempaltes

Create the AWX job templates as specified below (see AWX job templates table) org
user

Credentials:

Credential Description Definition/Type

The openIDL ansible playbooks can be used and executed standalone from a CLI. The preferred way though is to use AWX as it provides a
powerful engine to execute ansible playbooks through a user-friendly web-based interface or automate using AWX Web APIs.

More information on AWX: https://github.com/ansible/awx

https://github.com/openidl-org/openidl-aais-gitops.git
https://github.com/ansible/awx

aws-git-
actions

An AWS credential is used to access AWS APIs. The IAM user is created during the AWS
provisioning step. This user usually should have access to AWS resources and the
provisioned k8s clusters (HLF and applications k8s). The user is usually named and
suffixed with git-actions admin. External AWS id is usually git-actions.

The user is used by the playbooks to perform the deployment and setup actions.

The credential detailed parameters can be found in the terraform state (project <org_id>-
<env>-aws-resources; entry: "name": "git_actions_access_key")

fields:
 - id: aws_access_key
 type: string
 label: aws_access_key
 secret: true
 help_text: AWS IAM user
access key for aws
 - id: aws_secret_key
 type: string
 label: aws_secret_key
 secret: true
 help_text: AWS IAM user
secret key for aws
 - id: aws_external_id
 type: string
 label: aws_external_id
 - id: aws_assume_role_arn
 type: string
 label: AWS IAM user role
to assume
required:
 - aws.access_key
 - aws.secret_key
 - aws.external_id
 - aws.assume_role_arn

extra_vars:
 aws_access_key: '{{
aws_access_key }}'
 aws_secret_key: '{{
aws_secret_key }}'
 aws_external_id: '{{
aws_external_id }}'
 aws_assume_role_arn: '{{
aws_assume_role_arn }}'

aws-
terraform

The terraform AWS credential used to provision some resources in AWS like DNS entries.

You may find the credentials of the terraform user in terraform state of your project
<org_id>-<env>-iam (entry "user": "terraform_user")

The definition type is the same as defined
for aws-git-actions. The definition can be
re-used when creating the credential by
picking the type as created above.

git-config Git credentials (used to pull configuration from the private repository) fields:
 - id: sshkey
 type: string
 label: Base64 encoded
deploy private key string
 secret: true
 - id: repourl
 type: string
 label: GIT repo URL
 - id: repobranch
 type: string
 label: Git repo branch

extra_vars:
 ssh_key: '{{ sshkey }}'
 git_configs_repo_url: '{{
repourl }}'
 git_configs_repo_branch: '{{
repobranch }}'

bastion Bastion Machine SSH credential.

This machine is bootstrapped during the AWS infrastructure provisioning step. It is used as
a remote agent for the ansible playbooks. It is the entry point (gateway) to access the
AWS infrastructure in order to setup and deploy the network.

Machine - an existing standard credential
in AWX

hds-access Access information for application HDS DB.

This credential is injected by the playbooks to configure the openIDL applications for
access to the local carrier HDS database. The ansible playbooks don’t use it to establish a
connection to the HDS and perform operations.

fields:
 - id: hds_host
 type: string
 label: HDS host
 help_text: HDS host address
 - id: hds_port
 type: string
 label: hds_port
 help_text: HDS port
 - id: hds_username
 type: string
 label: hds_username
 secret: true
 - id: hds_password
 type: string
 label: hds_password
 secret: true
 - id: hds_dbname
 type: string
 label: hds_dbname
required:
 - hds_host
 - hds_port
 - hds_username
 - hds_password
 - hds_dbname

extra_vars:
 hds_host: '{{ hds_host }}'
 hds_port: '{{ hds_port }}'
 hds_dbname: '{{ hds_dbname
}}'
 hds_password: '{{
hds_password }}'
 hds_username: '{{
hds_username }}'

fabric-
console

Fabric Operator Console access default user/password.

Used by the playbooks to inject default user and password for the fabric console
deployment. Make sure the generate a strong password as it will secure properly the
access to the node HLF managed.

The playbooks also use this credential to connect to the console for the purpose of
performing operations on the HLF nodes.

Take note of that credential as the provided user and password will be required to log in to
the fabric operator console.

fields:
 - id: console_username
 type: string
 label: console_username
 help_text: Fabric Operator
Console Username
 - id: console_password
 type: string
 label: console_password
 secret: true
 help_text: Fabric Operator
Console Password
required:
 - console_username
 - console_password

extra_vars:
 console_password: '{{
console_password }}'
 console_username: '{{
console_username }}'

AWX Job Templates:

Playbook Template Name Credential Description

ansible/environment-setup.
yaml

<env_id>-<org_id>-
environment-setup

aws-git-actions

bastion

git-config

Install open source tools on the bastion host.

Setup the access to the cloud APIs

ansible/deploy-fabric-
ingress.yml

<env_id>-<org_id>-deploy-
fabric-ingress

aws-git-actions

bastion

git-config

Deploy Ingress controllers (classes) and cloud load balancers for the HLF k8s cluster

ansible/dns-zone-config-
blk.yml

<env_id>-<org_id>-dns-
config-blk

aws-terraform

bastion

git-config

Creates DNS entries to the defined domain and routes to the deployed load balancers.
Specific to the HLF and Vault endpoints

ansible/dns-zone-config-
apps.yml

<env_id>-<org_id>-dns-
config-apps

aws-terraform

bastion

git-config

Creates DNS entries to the defined domain and routes to the deployed load balancers.
Specific to the openIDL application endpoints

ansible/deploy-vault.yml <env_id>-<org_id>-deploy-
vault

aws-git-actions

bastion

git-config

Deploy Vault raft cluster for storing HLF identities (application and HLF nodes admins)

ansible/deploy-fabric-
operator.yml

<env_id>-<org_id>-deploy-
fabric-operator

aws-git-actions

bastion

git-config

Deploy HLF fabric operator

ansible/deploy-fabric-
console.yml

<env_id>-<org_id>-deploy-
fabric-console

aws-git-actions

bastion

git-config

fabric-console

Deploy HLF operator console

ansible/deploy-openidl-
app-identities.yml

<env_id>-<org_id>-deploy-
app-identities

aws-git-actions

bastion

git-config

fabric-console

Registers and enrolls the openidl application identities used to transact on the openidl
fabric network

ansible/deploy-openidl-
app-ingress.yml

<env_id>-<org_id>-deploy-
app-ingress

aws-git-actions

bastion

git-config

Deploys the application ingress controller and class. Creates the applications load
balancers for the applications k8s cluster.

ansible/deploy-mongodb.
yml

<env_id>-<org_id>-deploy-
mongodb

aws-git-actions

bastion

git-config

Deploys mongoDB as application database

ansible/deploy-openidl-
app-config.yaml

<env_id>-<org_id>-deploy-
app-config

aws-git-actions

bastion

git-config

fabric-console

hds-access
(carrier node)

Generates and deploys the application config as secrets

ansible/deploy-openidl-
app.yaml

<env_id>-<org_id>-deploy-
app

aws-git-actions

bastion

git-config

Deploys the openidl applications

ansible/chaincode-private-
init.yml

<env_id>-<org_id>-
chaincode-init

bastion

git-config

fabric-console

Calls init method of the chaincode deployed on the carrier/analytics private channel

	4 - AWX Setup and Configuration

