
6 - Hyperledger Fabric Node Deployment
This page provides information on the steps and the proper sequence of execution that is required to deploy the HLF nodes. There are common and
specific steps for each of the openIDL node types (carrier, analytics, ordering). The operator of the node has to execute only the common and specific step
of the owned node type.

The steps are clustered in dedicated sections depending on their purpose.

Steps:

Step Description Node
Type

Deploy Fabric
Operator/Setup
Environment Context

This step includes environment configuration actions (i.e. install tools and libraries) and the deployment of critical
components used to bootstrap the HLF nodes (ingress, fabric operator, fabric operator console, vault, etc.). Those
actions are common and should be performed by the operator of any node type.

Carrier

Analytics

Ordering

Deploy HLF Nodes
with Operator Console

Deploy Ordering
Service

Ordering

Deploy analytics
endorsing
organization

Analytics

Deploy a carrier
endorsing
organization

Carrier

Export, share and
import the MSP /
Ordering Service
definitions

Carrier

Analytics

Ordering

Deploy the openIDL
channels

Carrier

Analytics

Ordering

Deploy the openIDL
chaincodes

Carrier

Analytics

Prerequisites:

AWX is configured (see the AWX Setup and Configuration chapter)
Access to AWX with the organization user
Configuration is done and available at a private git repository
DNS entries are correct and maintained in Route53. The DNS node config ansible playbook expects to have an entry (hosted zone) in Route53.
The hosted zone name should match the configured main_domain value in the node config file. The Name Servers should be correctly configured
and maintained on the root domain level.
The configured main domain DNS can be resolved on internet. The node communicates (using TLS) to other nodes on the network over internet.

Deploy Fabric Operator/Setup Environment Context

Run the following ansible jobs in the order below:

AWX Job
Template

Notes

<env_id>-<org_id>-
environment-setup

Installs the required software on the bastion host, and setups AWS CLI access.

<env_id>-<org_id>-
deploy-fabric-ingress

Deploy k8s ingress controller for the HLF k8s cluster

<env_id>-<org_id>-
dns-config-blk

After the ingress is deployed, DNS entries must be setup in order to route the traffic from the configured domain to the k8s
cluster load balancers.

Make sure the DNS entries are setup properly before proceeding with the configured domain in the configuration file

<env_id>-<org_id>-
deploy-vault

Deploy vault cluster in HLF k8s cluster. The access credential to the vault instance are stored in AWS secrets manager

<env_id>-<org_id>-
deploy-fabric-
operator

Deploy fabric operator k8s controller

<env_id>-<org_id>-
deploy-fabric-
console

Deploy operator console. The access to the console is at the address. Note that the address is not configurable as it is
assembled by convention. The user and password to access the console are those defined in the credential “fabric-console“

https://{{console_namespace}}-{{console_name}}-console.{{console_domain}}

Deploy the HLF Nodes with Operator Console

The deployment of the HLF nodes is done using the fabric operator console web-based UI. The console provides an intuitive interface to perform a proper
configuration and deployment of various HLF components. The fabric console is also used to operate and manage the HLF nodes post-deployment (i.e.
join a new channel, deploy a new chaincode version, etc).

Deploy an Ordering Service

The HLF Ordering Service is an essential part of the openIDL network. Those nodes are used to order the transactions into blocks and distribute them on
the network. An HLF ordering service can be deployed and managed by anyone on the network. In order to streamline the network management the
openIDL hosts and manages an Ordering Service that serves the transactions on the openIDL network. The carrier and analytics nodes that are part of the
openIDL can join the channels served by the openIDL Ordering Service in order to become part of the network.

The creation of the ordering service and the ordering nodes (orderers) is an essential part of any HLF network deployment. The ordering nodes are used
to form ordering clusters that serve the ordering of the blocks on the application channels. The ordering service on an application channel can be
composed of multiple orderers operated and managed by different organizations on the network. The set of orderers that participate on a particular
application channel may be updated anytime through the life-cycle of the application channel using channel update transactions.

The ordering service at openIDL is managed and operated by openIDL to serve the needs of the network members and their dedicated nodes (endorsing
organizations).

Steps:

Step Details Notes

Deploy Certificate
Authority

Console Nodes Create CA

Create new CA

CA name: <ordering_org_id>
CA admin enroll id: <ordering_org_id>-
ca-admin
CA enrollment secret: anything that can
be remembered (note it down)

The CA admin is used to register identities with the CA. That includes
identities for the organization orderers/peers, organization admins, and the
organization application users.

Note that the name(id) pattern of the identities below must be respected as those identities are also used in the application deployment. The
variables below used in the naming convention of the resource names are as defined in the organization private config yaml file.

Accosiate CA admin
user identity

Console Nodes Ordering Service CA

Navigate to the details page of the ordering
service CA created above. Make sure the CA
is up and running (green light).

Associate (enroll) the CA admin identity
registered above during the CA deployment

Enroll id: <ordering_org_id>-ca-admin
(display name <ordering_org_id>-ca-
admin)

Register the ordering
service (MSP admin)
admin identity

Console Nodes Ordering Service CA

Navigate to the details page of the ordering
service CA created above.

Register the org admin user using the
deployed CA above

Enroll id: <ordering_org_id>-msp-admin
Type: admin
Enroll secret: should be remembered
(note it down)

The organization admin user is enrolled with the CA when the organization
is created (next step).

Create the ordering
service MSP definition

Console Nodes Organizations Create MSP
Definition

MSP name: <ordering_org_id>
MSP id: <ordering_org_id>
Enroll ID: <ordering_org_id>-msp-admin
Identity Name: <ordering_org_id>-msp-
admin

Use the enrollment secret as provided above.

The enrolled admin PKI is stored in vault

Register the ordering
node Identity with the
ordering service CA

Console Nodes Ordering Service CA

On the org CA node register the ordering
node identity

Register User
Enroll Id: <ordering_org_id>-orderer
Enroll Secret: remember/note it down, it
will be used to enrol the identity later
Type: orderer

Enroll Ordering
Service Admin TLS

Console Nodes Ordering Service CA

Navigate to the details page of the ordering
service CA created above.

On the ordering service CA page enroll the
identity <ordering_org_id>-msp-admin with
the TLS Certificate Authority.

Choose enroll identity from the three-dot
menu.
Choose TLS Certificate Authority in the
CA dropdown
Use the same enrollment secret as
entered during registration of the
ordering service admin identity.
Store the identity in the wallet under the
name <ordering_org_id>-msp-admin-tls.

The enrolment of the ordering service admin user with the ordering service
TLS CA is essential. It allows you to administrate the ordering nodes in order
to join/remove them on application channels.

Create the ordering
service

Console Nodes Ordering Service Create an
ordering service

Ordering Service name:
<ordering_org_id>
Without system channel
Three ordering node
Ordering Service enroll id:
<ordering_org_id>-orderer
Choose the ordering org MSP and
ordering org CA
Admin Identity: <ordering_org_id>-msp-
admin

More ordering nodes may be added later to scale and distribute the ordering
service nodes.

Deploy analytics (carrier) endorsing organization

The below steps are common for analytics and carrier node types.

The variables below used in the naming convention of the resource names are as defined in the organization’s private config file.

Steps:

Step Details Notes

Deploy Certificate
Authority

Console Nodes Add Certificate Authority

Create new CA

CA name: <org_id>
CA admin enroll id: <org_id>-ca-admin
CA enrollment secret: anything that can be remembered
(note it down)

Associate (enroll) the CA admin identity registered above during
the CA deployment

Enroll id: <org_id>-ca-admin (display name <org_id>-ca-
admin)

Accosiate CA admin
user identity

Console Nodes Certificate Authorities

Navigate to the details page of the endorsing org CA created
above. Make sure the CA is up and running (green light).

Associate (enroll) the CA admin identity registered above during
the CA deployment

Enroll id: <org_id>-ca-admin (display name <org_id>-ca-
admin)

Register the
organization admin
identity

Console Nodes Certificate Authorities

Register the org admin user using the deployed CA above

Enroll id: <org_id>-msp-admin
Type: admin
Enroll secret: should be remembered (note it down)

Create the MSP
definition for the
organization

Console Organizations Create MSP Definition

MSP name: <org_id>
MSP id: <org_id>
Enroll ID: <org_id>-msp-admin
Identity Name: <org_id>-msp-admin
Generate Certificates
Next and deploy

The same step as for the ordering organization

Register the peer node
identity

Console Nodes Certificate Authorities

On the endorsing org CA node register the peer node identity

Enroll Id: <org_id>-peer1
Enroll Secret: remember it and note it down
Type: peer

Deploy the peer node Console Nodes Add Peer

Peer enroll id (name): <org_id>-peer1
Choose the endorsing org MSP and CA created above
Choose the peer-enrolled identity as registered above
Enter the enrollment secret of the <org_id>-peer1 as
registered above
Accosiate the amdin Identity: <org_id>-msp-admin

More peer nodes can be added later to scale and
distribute the peers of the endorsing organization

Deploy a carrier endorsing organization

Follow the same steps as when deploying an analytics-endorsing organization.

Export, share and import the MSP / Ordering Service definitions

In order to deploy application channels and connect the endorsing organizations on the openIDL network, the definition of each of the organization (MSP)
should be exported, shared with the other organizations and respectively imported in their own fabric console. This enables the organizations to securely
build the permissions on the application channels and assign the corresponding security policies.

Steps:

Step Actor Note

Export the MSP
definitions to a file (json)

carrier,
analytics,
ordering

Console Organizations <org_id> export button in organization tile.

The administrator has to export its own operated organization definition

Export the ordering
service

ordering Console Nodes Ordering Services <ordering_org_id> export button in ordering clusters tile

Share the definition of
the ordering service

ordering The downloaded file export of the ordering service can be shared with the rest of the organizations using a
dedicated private git repository.

Share the MSP definition
json file with the other
organizations

carrier,
analytics,
ordering

The downloaded file above can be shared with the rest of the organizations using a dedicated private git
repository.

Import the MSP
definitions of the other
organizations

carrier,
analytics,
ordering

Console Organizations Import MSP definition

Every administrator has to import the MSP definitions of the rest of the network participating MSPs in their own
fabric console. This is essential to operate the network like deploying/managing application channels.

The openIDL network requires a minimum of carrier, analytics, and ordering service nodes in order to operate as designed. However, the
network can be expanded by adding additional carriers, analytics, and ordering service nodes.

In the real world, the carrier and analytics nodes are deployed on dedicated accounts operated by the respective business entities. It is possible
though to operate the nodes of different endorsing organizations (carriers/analytics) on the same infrastructure using the same fabric operator
console.

The import/export is required only if the organizations are deployed and managed by different fabric consoles. If the same console is used the
organizations will be already available

Import the ordering
service

carrier,
analytics

Console Ordering Services Add ordering services import an existing ordering services

Every administrator of an endorsing organization (analytics/carrier) has to import the ordering service that will
be used to serve the application channels. Use the shared exported ordering service file provided by the
administrator of the ordering service.

Deploy the openIDL channels

The openIDL HLF channels are used to perform transactions endorsed by the participating nodes. There is a public channel to record public data (i.e. data
call) and private channels to manage the private transaction between a carrier and analytics node (i.e. securely share the carrier data call extraction with
the analytics node).

By default, the channels have the following policies:

Lifecycle endorsement policy (deploy chaincode on the channel): The majority must approve
Smart contract endorsement policy: The majority must approve

By default, the ordering nodes of the ordering organization will be added to the ordering cluster that will be serving the channel.

Steps:

Step Actor Notes

Create the openIDL default
channel

ordering Console Channels Create channel

Channel Name:

defaultchannel

Organizations:

Add the MSPs of the carriers and the analytics organizations. Choose as an operator the analytics MSP.
The carrier MSPs may have writer/reader permissions.

Ordering organizations:

Add the MSP of the ordering service. Assign Administrator permission

Create the channel genesis block

Join the ordering service nodes to the channel

The channel names in openIDL must follow a specific naming convention as specified in the table above. The channel names must be defined
as per the above instructions.

openIDL network deployment doesn’t depend on or require any custom definition of HLF access control list

More details: https://hyperledger-fabric.readthedocs.io/en/latest/access_control.html

https://hyperledger-fabric.readthedocs.io/en/latest/access_control.html

Create the openIDL carrier
analytics private channel

Repeat the step for every
carrier in the network

ordering Console Channels Create channel

Note that this is the private channel between a single carrier node and the analytics node. Therefore the step
should be repeated in order to create specific channels for each pair of carrier/analytics nodes.

Channel Name:

<analytics org id>-<carrier org id>

Organizations:

Add the MSPs of the carrier and the analytics organizations. Choose as an operator the analytics MSP.
The carrier MSP may have writer/reader permissions.

Ordering organizations:

Add the MSP of the ordering service. Assign Administrator permission

Create the channel genesis block

Join the orderering service nodes to the channel

Join peers on public
/common/ default channel

Analytic
s,
Carrier

Console Nodes Peer Join channel

The administrators of the analytics and carriers nodes have to join their own peers on the defaultchannel as
created above

Select the ordering service

Enter the channel name:

defaultchannel

Select the peers to join the channel and mark it as anchor

Every MSP must have an anchor peer on the channel in order to enable the private communication capability
of the channel.

Anchor peers can be updated through channel configuration update transactions.

Join peers on the private
channels

Analytics Console Nodes Peer Join channel

The administrator of the anaylitics node must join the analytics node peer(s) to all the channel created to serve
the private communication between the analytics node and the carriers.

Enter the channel name:

<analytics org id>-<carrier org id>

Select the peers to join the channel and mark it as anchor

Every MSP must have an anchor peer on the channel in order to enable the private communication capability
of the channel.

Anchor peers can be updated through channel configuration update transactions.

Join peers on the private
channel

Carrier Console Nodes Peer Join channel

Every administrator of the carrier nodes must join their own carrier peer(s) the private channel created above to
serve the private communication between the analytics node and the carrier node.

Enter the channel name:

<analytics org id>-<carrier org id>

Select the peers to join the channel and mark it as anchor

Every MSP must have an anchor peer on the channel in order to enable the private communication capability
of the channel.

Anchor peers can be updated through channel configuration update transactions.

Deploy the openIDL chaincodes

The openIDL chaincode implements the data call business logic that is endorsed by the peers on the network.

Steps:

Step Actor Details

Propose openIDL default
chaincode definition

Analytics Console Channels Propose smart contract definitiondefaultchannel

Chaincode:

openidl-cc-default

Organization: the <org_id>; Organization msp admin: <org_id>-msp-admin
Install the smart contract by using the package file (add file):

https://github.com/orgs/openidl-org/packages?repo_name=openidl-main
The latest version of (*.tgz): openidl-chaincode.openidl-cc-default

Smart Contract version: v1 (version increases with every chaincode upgrade)
Use the default values for the rest of the steps

The default chaincode is deployed on the defaultchannel and is used to record the data calls issued by the
analytics node.

Approve the proposed
chaincode definition

Carrier Console Notifications

Chaincode:

openidl-cc-default

Organization: the <org_id>; Organization msp admin: <org_id>-msp-admin
Install the smart contract by using the package file (add file):

https://github.com/orgs/openidl-org/packages?repo_name=openidl-main
The latest version of (*.tgz): openidl-chaincode.openidl-cc-default

Smart Contract version: v1 (version increases with every chaincode upgrade)
Use the default values for the rest of the steps

The default chaincode is deployed on the defaultchannel and is used to record the data calls issued by the
analytics node.

Commit the chaincode
proposal

Analytics Console Notifications

Trigger commit of the approved chaincode definition. After a successful commit the chaincode deployment is
done.

Chaincode:

openidl-cc-default

Propose openIDL analytics-
carrier private chaincode
definition

Analytics Console Channels Propose smart contract definition<analytics org id>-<carrier org id>

Chaincode:

openidl-cc-analytics-carrier

Organization: the <org_id>; Organization msp admin: <org_id>-msp-admin
Install the smart contract by using the package file (add file):

https://github.com/orgs/openidl-org/packages?repo_name=openidl-main
The latest version of (*.tgz): openidl-cc-analytics-carrier

Smart Contract version: v1 (version increases with every chaincode upgrade)
If required select the chaincode reqruies init option

Use the following template to create a private data collection (PDC)) definition file on your local file system
(replace the values with the analytics and carrier specifics.

[
 {
 "name":"<analytics org id>_<carrier org id>_pdc",
 "policy": "OR('<analytics org id>.member', '<carrier org id>.member')",
 "requiredPeerCount":0,
 "maxPeerCount":0,
 "blockToLive":0
 }
]

Choose the templated local PDC file to add as PDC definition of the deployment
Use the default values for the rest of the steps

Repeat the above step for each analytics-carrier channel

The analytics-carrier chaincode is deployed on each of the analytics-carrier channels. It is used to record the
extraction of carrier data on the private data collection shared between the carrier and the analytics nodes.

Approve openIDL analytics-
carrier private chaincode
definition

Carrier Console Notifications

Chaincode:

openidl-cc-analytics-carrier

Organization: the <org_id>; Organization msp admin: <org_id>-msp-admin
Install the smart contract by using the package file (add file):

https://github.com/orgs/openidl-org/packages?repo_name=openidl-main
The latest version of (*.tgz): openidl-cc-analytics-carrier

Smart Contract version: v1 (version increases with every chaincode upgrade)
Use the default values for the rest of the steps

Repeat the above step for each analytics-carrier channel

The analytics-carrier chaincode is deployed on each of the analytics-carrier channels. It is used to record the
extraction of carrier data on the private data collection shared between the carrier and the analytics nodes.

Commit the chaincode
proposal

Analytics Console Notifications

Trigger commit of the approved chaincode definition. After a successful commit the chaincode deployment is
done.

Chaincode:

openidl-cc-analytics-carrier

In case the used public channel has name other than the default one (defaultchannel), the
chaincode should be initialized. Therefore it is required to select the chaincode requires init
option.

During initialization (see below) the name of the public channel is passed to the chaincode
and stored on the ledger (the carrier/analytics channel).

Initialize the chaincode Carrier

or

Analytics

In case the public channel name is other than "defaultchannel", the private carrier/analytics chaincode must
be initialized with the name of the public channel.

This step should be performed by the carrier node admin or the analytics node admin.

@Carrier admin: The admin of the carrier can login to the AWX instance and launch the template "<env_id>-
".<org_id>-chaincode-init

@Analytics admin: The analytics node admin can login to the AWX instance and navigate to the template "<e
". The admin should launch the template with additional variable nv_id>-<org_id>-chaincode-init

"init_on_channel_id".

The variable should define the name of the private (carrier/analytics) channel where the chaincode is
deployed and should be initialized. The admin user can repeat that step for every specific carrier/analytics
channel.

	6 - Hyperledger Fabric Node Deployment

