
8 - openIDL Carrier HDS Connector Service Deployment

Deployment on AWS k8s cluster

Prerequisites

K8s cluster up and running on AWS
AWS credentials (access key, secret, key, role,user external id). The AWS CLI user should have access and authorization to manage
the K8s cluster
Bastion machine on AWS with SSH access information (IP) and credentials (user name and private key). The current openIDL
deployment is tested on bastion machine based on AWS image amzn2-ami-hvm-2.0.20230221.0-x86_64-gp2.
Carrier HDS is up and running. Access information and credentials are available (the carrier HDS connector service can be re-configured
post deployment if changes of the used endpoints are required)
The carrier Node As a Service is up and running
The Carrier Node As a Service vendor provides the following information:

Hashicorp Vault access information
HLF console access information

Configuration (in git private repository)

The specific node settings are stored in a file (or as AWX credentials in case they define sensitive data) and supplied to the openIDL deployment scripts as
a resource from a git repository. The configuration file can be created as a copy of "https://github.com/openidl-org/openidl-aais-gitops/blob/develop/ansible

", configured locally and pushed to the private git repository of the node. The above config file should be pushed to the git repo with path /values.yml
"orgs_config/<org id>/config.yml"

The following parameters must be configured (the rest can stay as is):

Organization ID / HLF MSP ID / Organization name. This is the org setting used to provision the cloud resources

Example: carr1

org_id: ""

Environment ID is usually a combination of the org_id and the env used to provision the cloud resources

Example: carr1-test

env_id: ""

The AWS account number

aws_account_number: ""

The AWS region of the deployment

Example: us-east-2

region:

The opneIDL application type: analytics or carrier

Example: carrier

application_node_type: " "carrier

The openIDL ansible playbooks use the fabric operator ansible collection that is imported from the private git repository.

The collection is available as archive file in the openIDL repository: https://github.com/senofi/openidl-testnet-config/blob/n107-azure/bin/ibm-
.blockchain_platform-2.0.0-beta.tar.gz

The above archive should be downloaded and manually uploaded in the private git repository under the path bin/ ibm-blockchain_platform-2.0.0-beta.tar.gz.

https://github.com/openidl-org/openidl-aais-gitops/blob/develop/ansible/values.yml
https://github.com/openidl-org/openidl-aais-gitops/blob/develop/ansible/values.yml
https://github.com/senofi/openidl-testnet-config/blob/n107-azure/bin/ibm-blockchain_platform-2.0.0-beta.tar.gz
https://github.com/senofi/openidl-testnet-config/blob/n107-azure/bin/ibm-blockchain_platform-2.0.0-beta.tar.gz

Setup AWX

AWX helps to organize and manage the ansible resources. The ansible playbooks can be also executed from a command line using ansible CLI (https://do
). Using AWX is optional. In case ansible CLI is used, the ansible resources should be organized and cs.ansible.com/ansible/latest/cli/ansible-playbook.html

managed locally (i.e. in config files).

AWX Project

Create a new project named with the org name, use openIDL ansible git URL and the appropriate branch.

Source Control Type: Git

Source Control URL: https://github.com/openidl-org/openidl-aais-gitops.git

Source control Branch: develop

Update Revision on Launch: Checked

AWX Inventory

Create new inventory in AWX named with the org name. Add host using the azure bastion machine address. Add a group named ansible_provisioners.
Add the bastion host to the group.

Credentials

The following credential types should be created in AWX before adding the specific credentials resources. The created credentials will be assigned and
used by the ansible playbooks to deploy the HDS connector service. In case the ansible playbooks are executed outside AWX by using ansible CLI on a
local machine, the credentials should be supplied as extra vars (i.e. as files) to the CLI. The supplied credentials vars should be defined as specified in the
Injector Configuration Section below (for example could be separated or merged in multiple or single local files).

Cred
ential

Description Type Definition in AWX

https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://github.com/openidl-org/openidl-aais-gitops.git

 aws-
cli

The AWS credential is used to access AWS APIs. The IAM user should have access to the used k8s
cluster.

The user is used by the playbooks to perform the deployment and setup actions.

Input Configuration Section:

fields:
 - id: aws_access_key
 type: string
 label:
aws_access_key
 secret: true
 help_text: AWS IAM
user access key for aws
 - id: aws_secret_key
 type: string
 label:
aws_secret_key
 secret: true
 help_text: AWS IAM
user secret key for aws
 - id: aws_external_id
 type: string
 label:
aws_external_id
 - id:
aws_assume_role_arn
 type: string
 label: AWS IAM
user role to assume
required:
 - aws.access_key
 - aws.secret_key
 - aws.external_id
 - aws.assume_role_arn

Injector Configuration Section:

extra_vars:
 aws_access_key: '{{
aws_access_key }}'
 aws_secret_key: '{{
aws_secret_key }}'
 aws_external_id: '{{
aws_external_id }}'
 aws_assume_role_arn:
'{{
aws_assume_role_arn }}'

git-
config

Git credentials for access to the private git repository where the configuration file is available.

The ansible playbooks will use the credential to pull configuration from the private repository

Input Configuration Section:

fields:
 - id: sshkey
 type: string
 label: Base64
encoded deploy private
key string
 secret: true
 - id: repourl
 type: string
 label: GIT repo URL
 - id: repobranch
 type: string
 label: Git repo
branch

Injector Configuration Section:

extra_vars:
 ssh_key: '{{ sshkey
}}'

git_configs_repo_url:
'{{ repourl }}'

git_configs_repo_branch
: '{{ repobranch }}'

basti
on

Bastion Machine SSH credential.

The machine is used as a remote agent for the ansible playbooks. It is the entry point (gateway) to access
the AWS K8S cluster in order to setup and deploy the carrier HDS connector service container.

Machine - an existing standard
credential in AWX

hds-
acce
ss

Access information for application HDS DB.

This credential is injected by the playbooks to configure the openIDL applications for access to the local
carrier HDS database. The connection to the HDS DB will be established by the carrier HDS connector
service at runtime

Input Configuration Section:

fields:
 - id: hds_host
 type: string
 label: HDS host
 help_text: HDS
host address
 - id: hds_port
 type: string
 label: hds_port
 help_text: HDS port
 - id: hds_username
 type: string
 label: hds_username
 secret: true
 - id: hds_password
 type: string
 label: hds_password
 secret: true
 - id: hds_dbname
 type: string
 label: hds_dbname
required:
 - hds_host
 - hds_port
 - hds_username
 - hds_password
 - hds_dbname

Injector Configuration Section:

extra_vars:
 hds_host: '{{
hds_host }}'
 hds_port: '{{
hds_port }}'
 hds_dbname: '{{
hds_dbname }}'
 hds_password: '{{
hds_password }}'
 hds_username: '{{
hds_username }}'

vault-
acce
ss

The Hashicorp vault is used to store securely the certs and private keys of the users that can access the
HLF network by connecting to the HLF peer of the carrier.

Those users are used by the carrier HDS connector service to connect and transact securely on the
openIDL network by connecting to the carrier peer.

The vault access credential contains the access information and credentials that is used to connect to the
Hashicorp vault to fetch the HLF user credentials.

The vendor of the carrier Node As a Service will provide the credential to the carrier. The credential is a
base64 encoded json file.

Input Configuration Section:

fields:
 - id:
vault_config_encoded
 type: string
 label:
vault_config_encoded
 help_text: Vault
endpoint and access
credentials

Injector Configuration Section:

extra_vars:

vault_config_encoded:
'{{
vault_config_encoded
}}'

fabri
c-
cons
ole

Fabric Operator Console access default user/password.

Used by the playbooks to inject default user and password for the fabric console deployment. Make sure
the generate a strong password as it will secure properly the access to the node HLF managed.

The playbooks also use this credential to connect to the console for the purpose of performing operations
on the HLF nodes.

Take note of that credential as the provided user and password will be required to log in to the fabric
operator console.

Input Configuration Section:

fields:
 - id:
console_username
 type: string
 label:
console_username
 help_text: Fabric
Operator Console
Username
 - id:
console_password
 type: string
 label:
console_password
 secret: true
 help_text: Fabric
Operator Console
Password
required:
 - console_username
 - console_password

Injector Configuration Section:

extra_vars:
 console_password:
'{{ console_password
}}'
 console_username:
'{{ console_username
}}'

Ansible Playbooks

Playbook Template
Name

Credenti
als

Description

ansible/environment-setup.yaml environment-
setup

bastion

git-config

Installs a few open-source libraries required for ansible playbook runs (i.e. AWS CLI, JQ, etc)

ansible/deploy-mongodb-k8s-
native.yml

aws-deploy-
mongodb

aws-cli

bastion

git-
config-
azure

Installs MongoDB on the k8s cluster. The mongo DB access is stored as k8s secret that is later shared
with the HDS connector service container.

ansible/deploy-openidl-app-
config-k8s-native.yaml

aws-deploy-
carrier-config

aws-cli

bastion

fabric-
console

hds-
access

vault-
access

git-config

Creates a k8s secret with all configurations needed by the HDS connector service. The created secret
content is later injected in the HDS connector service container

ansible/deploy-openidl-app-
carrier-k8s-native.yaml

aws-carrier-
app-deploy

aws-cli

bastion

git-config

Deploys the HDS container service container using the openIDL helm chart

Deployment on Azure K8s cluster

Prerequisites

K8s cluster up and running on Azure
Azure CLI access and credentials (tenant id, subscription id , user name and password). The Azure CLI user should have access and
authorization to manage the K8s cluster
Bastion machine on Azure with SSH access information (IP) and credentials (user name and private Key). The current openIDL
deployment is tested on bastion machine based on ubuntu 22.04 (Azure image: com-ubuntu-server-jammy)
Carrier HDS is up and running. Access information and credentials are available (the carrier HDS connector service can be re-configured
post deployment if changes of the used endpoints are required)
The carrier Node As a Service is up and running
The Carrier Node As a Service vendor provides the following information:

Hashicorp Vault access information
HLF console access information

Configuration (in git private repository)

The specific node settings are stored in a file (or as AWX credentials in case they define sensitive data) and supplied to the openIDL deployment scripts as
a resource from a git repository. The configuration file can be created as a copy of "https://github.com/openidl-org/openidl-aais-gitops/blob/develop/ansible

", configured locally and pushed to the private git repository of the node. The above config file should be pushed to the git repo with path /values.yml
"orgs_config/<org id>/config.yml"

The following parameters must be configured (the rest can stay as is):

https://github.com/openidl-org/openidl-aais-gitops/blob/develop/ansible/values.yml
https://github.com/openidl-org/openidl-aais-gitops/blob/develop/ansible/values.yml

The k8s cluster where the carrier HDS connector service container will be deployed

openidl_apps_cluster: ""

Azure resource group

azure_aks_rg: ""

Set to azure as a cloud deployment (this is required to overwrite the default value of aws that is used for AWS deployment)

cloud_deployment: " "azure

Organization ID / HLF MSP ID / Organization name. This is the org setting used to provision the cloud resources

Example: carr1

org_id: ""

Environment ID is usually a combination of the org_id and the env used to provision the cloud resources

Example: carr1-test

env_id: ""

The opneIDL application type: analytics or carrier

Example: carrier

application_node_type: " "carrier

The openIDL ansible playbooks use the fabric operator ansible collection that is imported from the private git repository.

The collection is available as archive file in the openIDL repository: https://github.com/senofi/openidl-testnet-config/blob/n107-azure/bin/ibm-
.blockchain_platform-2.0.0-beta.tar.gz

The above archive should be downloaded and manually uploaded in the private git repository under the path bin/ ibm-blockchain_platform-2.0.0-beta.tar.gz.

Setup AWX

AWX helps to organize and manage the ansible resources. The ansible playbooks can be also executed from a command line using ansible CLI (https://do
). Using AWX is optional. In case ansible CLI is used, the ansible resources should be organized and cs.ansible.com/ansible/latest/cli/ansible-playbook.html

managed locally (i.e. in config files).

AWX Project

Create a new project named with the org name, use openIDL ansible git URL and the appropriate branch.

Source Control Type: Git

Source Control URL: https://github.com/openidl-org/openidl-aais-gitops.git

Source control Branch: develop

Update Revision on Launch: Checked

AWX Inventory

Create new inventory in AWX named with the org name. Add host using the azure bastion machine address. Add a group named ansible_provisioners.
Add the bastion host to the group.

https://github.com/senofi/openidl-testnet-config/blob/n107-azure/bin/ibm-blockchain_platform-2.0.0-beta.tar.gz
https://github.com/senofi/openidl-testnet-config/blob/n107-azure/bin/ibm-blockchain_platform-2.0.0-beta.tar.gz
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html
https://github.com/openidl-org/openidl-aais-gitops.git

Credentials

The following credential types should be created in AWX before adding the specific credentials resources. The created credentials will be assigned and
used by the ansible playbooks to deploy the HDS connector service. In case the ansible playbooks are executed outside AWX by using ansible CLI on a
local machine, the credentials should be supplied as extra vars (i.e. as files) to the CLI. The supplied credentials vars should be defined as specified in the
Injector Configuration Section below (for example could be separated or merged in multiple or single local files).

Cred
ential

Description Type Definition in AWX

azure
-cli

The azure CLI is used to establish connection to the running K8S cluster on Azure. Input Configuration Section:

fields:
 - id: azure_cli_user
 type: string
 label:
azure_cli_user
 secret: true
 help_text: Azure
CLI user name service
principal
 - id: azure_cli_pw
 type: string
 label: azure_cli_pw
 secret: true
 help_text: Azure
CLI user password
service principal
 - id: azure_cli_tenant
 type: string
 label:
azure_cli_tenant
 - id:
azure_cli_subscription
 type: string
 label:
azure_cli_subscription
required:
 - azure_cli_user
 - azure_cli_pw
 - azure_cli_tenant
 -
azure_cli_subscription

Injector Configuration Section:

extra_vars:
 azure_cli_pw: '{{
azure_cli_pw }}'
 azure_cli_user: '{{
azure_cli_user }}'
 azure_cli_tenant: '{{
azure_cli_tenant }}'

azure_cli_subscription:
'{{
azure_cli_subscription
}}'

git-
config
-
azure

Git credentials for access to the private git repository where the configuration file is available.

The ansible playbooks will use the credential to pull configuration from the private repository

Input Configuration Section:

fields:
 - id: sshkey
 type: string
 label: Base64
encoded deploy private
key string
 secret: true
 - id: repourl
 type: string
 label: GIT repo URL
 - id: repobranch
 type: string
 label: Git repo
branch

Injector Configuration Section:

extra_vars:
 ssh_key: '{{ sshkey
}}'
 git_configs_repo_url:
'{{ repourl }}'

git_configs_repo_branch:
'{{ repobranch }}'

azure
-
bastion

Bastion Machine SSH credential.

The machine is used as a remote agent for the ansible playbooks. It is the entry point (gateway) to
access the Azure K8S cluster in order to setup and deploy the carrier HDS connector service container.

Machine - an existing standard
credential in AWX

hds-
access

Access information for application HDS DB.

This credential is injected by the playbooks to configure the openIDL applications for access to the local
carrier HDS database. The connection to the HDS DB will be established by the carrier HDS connector
service at runtime

Input Configuration Section:

fields:
 - id: hds_host
 type: string
 label: HDS host
 help_text: HDS host
address
 - id: hds_port
 type: string
 label: hds_port
 help_text: HDS port
 - id: hds_username
 type: string
 label: hds_username
 secret: true
 - id: hds_password
 type: string
 label: hds_password
 secret: true
 - id: hds_dbname
 type: string
 label: hds_dbname
required:
 - hds_host
 - hds_port
 - hds_username
 - hds_password
 - hds_dbname

Injector Configuration Section:

extra_vars:
 hds_host: '{{
hds_host }}'
 hds_port: '{{
hds_port }}'
 hds_dbname: '{{
hds_dbname }}'
 hds_password: '{{
hds_password }}'
 hds_username: '{{
hds_username }}'

vault-
access

The Hashicorp vault is used to store securely the certs and private keys of the users that can access the
HLF network by connecting to the HLF peer of the carrier.

Those users are used by the carrier HDS connector service to connect and transact securely on the
openIDL network by connecting to the carrier peer.

The vault access credential contains the access information and credentials that is used to connect to
the Hashicorp vault to fetch the HLF user credentials.

The vendor of the carrier Node As a Service will provide the credential to the carrier. The credential is a
base64 encoded json file.

Input Configuration Section:

fields:
 - id:
vault_config_encoded
 type: string
 label:
vault_config_encoded
 help_text: Vault
endpoint and access
credentials

Injector Configuration Section:

extra_vars:
 vault_config_encoded:
'{{
vault_config_encoded }}'

fabric
-
conso
le

Fabric Operator Console access default user/password.

Used by the playbooks to inject default user and password for the fabric console deployment. Make sure
the generate a strong password as it will secure properly the access to the node HLF managed.

The playbooks also use this credential to connect to the console for the purpose of performing
operations on the HLF nodes.

Take note of that credential as the provided user and password will be required to log in to the fabric
operator console.

Input Configuration Section:

fields:
 - id: console_username
 type: string
 label:
console_username
 help_text: Fabric
Operator Console
Username
 - id: console_password
 type: string
 label:
console_password
 secret: true
 help_text: Fabric
Operator Console
Password
required:
 - console_username
 - console_password

Injector Configuration Section:

extra_vars:
 console_password: '{{
console_password }}'
 console_username: '{{
console_username }}'

Ansible Playbooks

The following ansible playbooks will setup, configure and deploy the carrier HDS connector service. The playbooks should be executed in the order
specified below and using the credentials as defined above (ansible CLI may be used instead of AWX).

When running in AWX, the corresponding templates should be created before executing the jobs (run the playbooks by launching the AWX templates)

Playbook Template Name Credenti
als

Description

ansible/environment-setup-
carrier-azure.yaml

environment-setup-
carrier-azure

azure-
bastion

git-
config-
azure

Installs a few open-source libraries required for ansible playbook runs (i.e. Azure CLI, JQ, etc)

ansible/deploy-mongodb-k8s-
native.yml

azure-deploy-
mongodb

azure-cli

azure-
bastion

git-
config-
azure

Installs MongoDB on the k8s cluster. The mongo DB access is stored as k8s secret that is later shared
with the HDS connector service container.

ansible/deploy-openidl-app-
config-k8s-native.yaml

azure-deploy-
carrier-config

azure-cli

azure-
bastion

fabric-
console

hds-
access

vault-
access

git-
config-
azure

Creates a k8s secret with all configurations needed by the HDS connector service. The created secret
content is later injected in the HDS connector service container

ansible/deploy-openidl-app-
carrier-k8s-native.yaml

azure-carrier-app-
deploy

azure-cli

azure-
bastion

git-
config-
azure

Deploys the HDS container service container using the openIDL helm chart

	8 - openIDL Carrier HDS Connector Service Deployment

